Exercises

Exercise 4.1 Uncorrelated does not imply independent
Let $X \sim U(-1,1)$ and $Y=X^{2}$. Clearly Y is dependent on X (in fact, Y is uniquely determined by X). However, show that $\rho(X, Y)=0$. Hint: if $X \sim U(a, b)$ then $E[X]=(a+b) / 2$ and $\operatorname{var}[X]=(b-a)^{2} / 12$.

Exercise 4.5 Normalization constant for a multidimensional Gaussian
Prove that the normalization constant for a d-dimensional Gaussian is given by

$$
\begin{equation*}
(2 \pi)^{d / 2}|\boldsymbol{\Sigma}|^{\frac{1}{2}}=\int \exp \left(-\frac{1}{2}(\mathbf{x}-\mu)^{T} \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})\right) d \mathbf{x} \tag{4.265}
\end{equation*}
$$

Hint: diagonalize $\boldsymbol{\Sigma}$ and use the fact that $|\boldsymbol{\Sigma}|=\prod_{i} \lambda_{i}$ to write the joint pdf as a product of d onedimensional Gaussians in a transformed coordinate system. (You will need the change of variables formula.) Finally, use the normalization constant for univariate Gaussians.

Exercise 4.7 Conditioning a bivariate Gaussian

Consider a bivariate Gaussian distribution $p\left(x_{1}, x_{2}\right)=\mathcal{N}(x \mid \mu, \Sigma)$ where

$$
\Sigma=\left(\begin{array}{cc}
\sigma_{1}^{2} & \sigma_{12} \tag{4.269}\\
\sigma_{21} & \sigma_{2}^{2}
\end{array}\right)=\sigma_{1} \sigma_{2}\left(\begin{array}{cc}
\frac{\sigma_{1}}{\sigma_{2}} & \rho \\
\rho & \frac{\sigma_{2}}{\sigma_{1}}
\end{array}\right)
$$

where the correlation coefficient is given by

$$
\begin{equation*}
\rho \triangleq \frac{\sigma_{12}}{\sigma_{1} \sigma_{2}} \tag{4.270}
\end{equation*}
$$

a. What is $P\left(X_{2} \mid x_{1}\right)$? Simplify your answer by expressing it in terms of $\rho, \sigma_{2}, \sigma_{1}, \mu_{1}, \mu_{2}$ and x_{1}.
b. Assume $\sigma_{1}=\sigma_{2}=1$. What is $P\left(X_{2} \mid x_{1}\right)$ now?

Exercise 4.11 Derivation of the NIW posterior
Derive Equation 4.209. Hint: one can show that

$$
\begin{align*}
N(\overline{\mathbf{x}} & -\boldsymbol{\mu})(\overline{\mathbf{x}}-\boldsymbol{\mu})^{T}+\kappa_{0}\left(\boldsymbol{\mu}-\mathbf{m}_{0}\right)\left(\boldsymbol{\mu}-\mathbf{m}_{0}\right)^{T} \tag{4.271}\\
& =\kappa_{N}\left(\boldsymbol{\mu}-\mathbf{m}_{N}\right)\left(\boldsymbol{\mu}-\mathbf{m}_{N}\right)^{T}+\frac{\kappa_{0} N}{\kappa_{N}}\left(\overline{\mathbf{x}}-\mathbf{m}_{0}\right)\left(\overline{\mathbf{x}}-\mathbf{m}_{0}\right)^{T} \tag{4.272}
\end{align*}
$$

This is a matrix generalization of an operation called completing the square. ${ }^{5}$
Derive the corresponding result for the normal-Wishart model.

$$
\begin{align*}
p(\boldsymbol{\mu}, \boldsymbol{\Sigma} \mid \mathcal{D}) & =\operatorname{NIW}\left(\boldsymbol{\mu}, \boldsymbol{\Sigma} \mid \mathbf{m}_{N}, \kappa_{N}, \nu_{N}, \mathbf{S}_{N}\right) \tag{4.209}\\
\mathbf{m}_{N} & =\frac{\kappa_{0} \mathbf{m}_{0}+N \overline{\mathbf{x}}}{\kappa_{N}}=\frac{\kappa_{0}}{\kappa_{0}+N} \mathbf{m}_{0}+\frac{N}{\kappa_{0}+N} \overline{\mathbf{x}} \tag{4.210}\\
\kappa_{N} & =\kappa_{0}+N \tag{4.211}\\
\nu_{N} & =\nu_{0}+N \tag{4.212}\\
\mathbf{S}_{N} & =\mathbf{S}_{0}+\mathbf{S}_{\bar{x}}+\frac{\kappa_{0} N}{\kappa_{0}+N}\left(\overline{\mathbf{x}}-\mathbf{m}_{0}\right)\left(\overline{\mathbf{x}}-\mathbf{m}_{0}\right)^{T} \tag{4.213}\\
& =\mathbf{S}_{0}+\mathbf{S}+\kappa_{0} \mathbf{m}_{0} \mathbf{m}_{0}^{T}-\kappa_{N} \mathbf{m}_{N} \mathbf{m}_{N}^{T} \tag{4.214}
\end{align*}
$$

where we have defined $\mathbf{S} \triangleq \sum_{i=1}^{N} \mathbf{x}_{i} \mathbf{x}_{i}^{T}$ as the uncentered sum-of-squares matrix (this is easier to update incrementally than the centered version).

