26 June 2023
The 3rd quiz in Pattern Recognition and Machine Learning

Due 3 July 2023
Exercises

Exercise 4.1 Uncorrelated does not imply independent

Let X ~ U(—=1,1) and Y = X2 Clearly Y is dependent on X (in fact, Y is uniquely determined
by X). However, show that p(X,Y) = 0. Hint: if X ~ U(a,b) then EF[X] = (a + b)/2 and
var [X] = (b—a)?/12.

Exercise 4.5 Normalization constant for a multidimensional Gaussian

Prove that the normalization constant for a d-dimensional Gaussian is given by
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Hint: diagonalize 3 and use the fact that || = [], A; to write the joint pdf as a product of d one-
dimensional Gaussians in a transformed coordinate system. (You will need the change of variables formula.)
Finally, use the normalization constant for univariate Gaussians.

Exercise 4.7 Conditioning a bivariate Gaussian
Consider a bivariate Gaussian distribution p(z1, z2) = N (z|u, X) where
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where the correlation coefficient is given by
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a. What is P(X3|z1)? Simplify your answer by expressing it in terms of p, o2, o1, p1,u2 and .
b. Assume o1 = o2 = 1. What is P(X2|x1) now?



Exercise 4.11 Derivation of the NIW posterior

Derive Equation 4.209. Hint: one can show that
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This is a matrix generalization of an operation called completing the square.’
Derive the corresponding result for the normal-Wishart model.
p(p,2|D) = NIW(p,X|mpy, kN, VN, SN) (4.209)
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where we have defined S = Zil x;x. as the uncentered sum-of-squares matrix (this is easier
to update incrementally than the centered version).





