
i. P (e1, e2), P (H), P (e1|H), P (e2|H)

ii. P (e1, e2), P (H), P (e1, e2|H)

iii. P (e1|H), P (e2|H), P (H)

b. Now suppose we now assume E1 ⊥ E2|H (i.e., E1 and E2 are conditionally independent given H ).
Which of the above 3 sets are sufficent now?

The 2nd quiz in Pattern Recognition and Machine Learning 

(Answer)

3.1 Solutions

3.1.1 MLE for the Bernoulli/ binomial model

The log-likelihood is

`(θ) =

N∑
i=1

log Ber(xi|θ) =

N∑
i=1

log
[
θxi(1− θ)1−xi

]
= N1 log θ +N2 log(1− θ) (3.1)

whereN1 =
∑
i xi is the number of heads andN2 =

∑
i(1−xi) is the number of tails. To find the MLE, we find the maximum

of this expression as follows:

N1

θ
= −d` N2

dθ 1− θ
= 0 (3.2)

N1 = θ̂(N2 +N1) (3.3)

θ̂ =
N1

N1 +N2
(3.4)

where N1 +N2 = N .

3.1.11 Bayesian analysis of the exponential distribution
1. The loglikelihood is

`(θ) = N log θ − θ
∑
i

xi (3.37)

Optimizing we get

d

dθ
`(θ) =

N

θ
−
∑
i

xi = 0 (3.38)

θ̂ =

∑N
i=1 xi
N

(3.39)

2. θ̂mle(D) = 1/x = 1/5.

工藤峰一
タイプライターテキスト
Wrong! The correct one
 is its inverse! (Mineichi）



3. E [θ] = 1/λ = 1/3 so λ̂ = 3

4. The prior is

p(θ) = θ3e−3θ (3.40)

The likelihood is

p(D|θ) ∝ e−θx1e−θx2e−θx2 = e−15θ (3.41)

So the posterior is

p(θ|D) ∝ θ3e−3θe−15θ = Ga(θ|4, 18) (3.42)

5. Yes, this prior is conjugate, since the exponential is a special case of the Gamma.

6. The posterior mean is

4

18
=

2

9
=

1

3

3

3 + 15
+

1

5

15

3 + 15
(3.43)

7. The posterior mean is a compromise between the prior mean (1/3) and the MLE (1/5). This is a more reasonable guess
than the MLE since the sample size is small, so we should rely on our expert prior knowledge (although with such a
simple one-parameter prior, we were not able to encode how strongly we trusted this expert).
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