The 2nd quiz in Pattern Recognition and Machine Learning

3.1 Solutions

3.1.1 MLE for the Bernoulli/ binomial model

The log-likelihood is

$$
\begin{equation*}
\ell(\theta)=\sum_{i=1}^{N} \log \operatorname{Ber}\left(x_{i} \mid \theta\right)=\sum_{i=1}^{N} \log \left[\theta^{x_{i}}(1-\theta)^{1-x_{i}}\right]=N_{1} \log \theta+N_{2} \log (1-\theta) \tag{3.1}
\end{equation*}
$$

where $N_{1}=\sum_{i} x_{i}$ is the number of heads and $N_{2}=\sum_{i}\left(1-x_{i}\right)$ is the number of tails. To find the MLE, we find the maximum of this expression as follows:

$$
\begin{align*}
\frac{d \ell}{d \theta} & =\frac{N_{1}}{\theta}-\frac{N_{2}}{1-\theta}=0 \tag{3.2}\\
N_{1} & =\hat{\theta}\left(N_{2}+N_{1}\right) \tag{3.3}\\
\hat{\theta} & =\frac{N_{1}}{N_{1}+N_{2}} \tag{3.4}
\end{align*}
$$

where $N_{1}+N_{2}=N$.

3.1.11 Bayesian analysis of the exponential distribution

1. The loglikelihood is

$$
\begin{equation*}
\ell(\theta)=N \log \theta-\theta \sum_{i} x_{i} \tag{3.37}
\end{equation*}
$$

Optimizing we get

$$
\begin{align*}
& \frac{d}{d \theta} \ell(\theta)=\frac{N}{\theta}-\sum_{i} x_{i}=0 \tag{3.38}\\
& \hat{\theta}=\frac{\sum_{i=1}^{N} x_{i}}{N} \quad \text { Wrong! The correct one } \tag{3.39}\\
& \text { is its inverse! (Mineichi) }
\end{align*}
$$

2. $\hat{\theta}_{m l e}(\mathcal{D})=1 / \bar{x}=1 / 5$.
3. $\mathbb{E}[\theta]=1 / \lambda=1 / 3$ so $\hat{\lambda}=3$
4. The prior is

$$
\begin{equation*}
p(\theta)=\theta^{3} e^{-3 \theta} \tag{3.40}
\end{equation*}
$$

The likelihood is

$$
\begin{equation*}
p(\mathcal{D} \mid \theta) \propto e^{-\theta x_{1}} e^{-\theta x_{2}} e^{-\theta x_{2}}=e^{-15 \theta} \tag{3.41}
\end{equation*}
$$

So the posterior is

$$
\begin{equation*}
p(\theta \mid \mathcal{D}) \propto \theta^{3} e^{-3 \theta} e^{-15 \theta}=\mathrm{Ga}(\theta \mid 4,18) \tag{3.42}
\end{equation*}
$$

5. Yes, this prior is conjugate, since the exponential is a special case of the Gamma.
6. The posterior mean is

$$
\begin{equation*}
\frac{4}{18}=\frac{2}{9}=\frac{1}{3} \frac{3}{3+15}+\frac{1}{5} \frac{15}{3+15} \tag{3.43}
\end{equation*}
$$

7. The posterior mean is a compromise between the prior mean ($1 / 3$) and the MLE ($1 / 5$). This is a more reasonable guess than the MLE since the sample size is small, so we should rely on our expert prior knowledge (although with such a simple one-parameter prior, we were not able to encode how strongly we trusted this expert).
