
Chapter 2

Probability

2.1 Solutions

2.1.1 Probabilities are sensitive to the form of the question that was used to generate the answer
1. The event space is shown below, where X is one child and Y the other.

X Y Prob.
G G 1/4
G B 1/4
B G 1/4
B B 1/4

Let Ng be the number of girls and Nb the number of boys. We have the constraint (side information) that Nb +Ng = 2
and 0 ≤ Nb, Ng ≤ 2. We are told Nb ≥ 1 and are asked to compute the probability of the event Ng = 1 (i.e., one child
is a girl). By Bayes rule we have

p(Ng = 1|Nb ≥ 1) =
p(Nb ≥ 1|Ng = 1)p(Ng = 1)

p(Nb ≥ 1)
(2.1)

=
1× 1/2

3/4
= 2/3 (2.2)

2. Let Y be the identity of the observed child and X be the identity of the other child. We want p(X = g|Y = b). By Bayes
rule we have

p(X = g|y = b) =
p(Y = b|X = g)p(X = g)

p(Y = b)
(2.3)

=
(1/2)× (1/2)

1/2
= 1/2 (2.4)

Tom Minka (Minka 1998) has written the following about these results:

This seems like a paradox because it seems that in both cases we could condition on the fact that ”at least one child
is a boy.” But that is not correct; you must condition on the event actually observed, not its logical implications. In
the first case, the event was ”He said yes to my question.” In the second case, the event was ”One child appeared in
front of me.” The generating distribution is different for the two events. Probabilities reflect the number of possible
ways an event can happen, like the number of roads to a town. Logical implications are further down the road and
may be reached in more ways, through different towns. The different number of ways changes the probability.

2.1.2 Legal reasoning
Let E be the evidence (the observed blood type), and I be the event that the defendant is innocent, and G = ¬I be the event
that the defendant is guilty.

1. The prosecutor is confusing p(E|I) with p(I|E). We are told that p(E|I) = 0.01 but the relevant quantity is p(I|E). By
Bayes rule, this is

p(I|E) =
p(E|I)p(I)

p(E|I)p(I) + p(E|G)p(G)
=

0.01p(I)

0.01p(I) + (1− p(I))
(2.5)
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since p(E|G) = 1 and p(G) = 1 − p(I). So we cannot determine p(I|E) without knowing the prior probability p(I).
So p(E|I) = p(I|E) only if p(G) = p(I) = 0.5, which is hardly a presumption of innocence.

To understand this more intuitively, consider the following isomorphic problem (from http://en.wikipedia.
org/wiki/Prosecutor’s_fallacy):

A big bowl is filled with a large but unknown number of balls. Some of the balls are made of wood, and some
of them are made of plastic. Of the wooden balls, 100 are white; out of the plastic balls, 99 are red and only 1
are white. A ball is pulled out at random, and observed to be white.

Without knowledge of the relative proportions of wooden and plastic balls, we cannot tell how likely it is that the ball
is wooden. If the number of plastic balls is far larger than the number of wooden balls, for instance, then a white ball
pulled from the bowl at random is far more likely to be a white plastic ball than a white wooden ball — even though
white plastic balls are a minority of the whole set of plastic balls.

2. The defender is quoting p(G|E) while ignoring p(G). The prior odds are

p(G)

p(I)
=

1

799, 999
(2.6)

The posterior odds are

p(G|E)

p(I|E)
=

1

7999
(2.7)

So the evidence has increased the odds of guilt by a factor of 1000. This is clearly relevant, although perhaps still not
enough to find the suspect guilty.

2.1.3 Variance of a sum

We have

var [X + Y ] = E[(X + Y )2]− (E[X] + E[Y ])2 (2.8)
= E[X2 + Y 2 + 2XY ]− (E[X]2 + E[Y ]2 + 2E[X]E[Y ]) (2.9)
= E[X2]− E[X]2 + E[Y 2]− E[Y ]2 + 2E[XY ]− 2E[X]E[Y ] (2.10)
= var [X] + var [Y ] + 2cov [X,Y ] (2.11)

If X and Y are independent, then cov [X,Y ] = 0, so var [X + Y ] = var [X] + var [Y ].
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2.1.5 The Monty Hall problem
Let Hi denote the hypothesis that the prize is behind door i. We make the following assumptions: the three hypotheses H1, H2

and H3 are equiprobable a priori, i.e.,,

P (H1) = P (H2) = P (H3) =
1

3
. (2.18)

The datum we receive, after choosing door 1, is one of D = 3 and D = 2 (meaning door 3 or 2 is opened, respectively). We
assume that these two possible outcomes have the following probabilities. If the prize is behind door 1 then the host has a free
choice; in this case we assume that the host selects at random between D = 2 and D = 3. Otherwise the choice of the host is
forced and the probabilities are 0 and 1.

P (D = 2‖H1) =
1

2
P (D = 2‖H2) = 0 P (D = 2‖H3) = 1

P (D = 3‖H1) =
1

2
P (D = 3‖H2) = 1 P (D = 3‖H3) = 0

(2.19)

Now, using Bayes theorem, we evaluate the posterior probabilities of the hypotheses:

P (Hi‖D = 3) =
P (D = 3‖Hi)P (Hi)

P (D = 3)
(2.20)

P (H1‖D = 3) = (1/2)(1/3)
P (D=3) P (H2‖D = 3) = (1)(1/3)

P (D=3) P (H3‖D = 3) = (0)(1/3)
P (D=3) (2.21)

The denominator P (D = 3) is (1/2) because it is the normalizing constant for this posterior distribution. So

P (H1‖D = 3) =
1

3
P (H2‖D = 3) =

2

3
P (H3‖D = 3) = 0. (2.22)

So the contestant should switch to door 2 in order to have the biggest chance of getting the prize.
Many people find this outcome surprising. There are two ways to make it more intuitive. One is to play the gamethirty times

with a friend and keep track of the frequency with which switching gets the prize. Alternatively, you can perform a thought
experiment in which the game is played with a million doors. The rules are now that the contestant chooses one door, then the
game show host opens 999,998 doors in such a way as not to reveal the prize, leaving the contestant’s selected door and one
other door closed. The contestant may now stick or switch. Imagine the contestant confronted by a million doors, of which
doors 1 and 234,598 have not been opened, door 1 having been the contestant’s initial guess. Where do you think the prize is?

Another way to think about the problem is to use a directed graphical model of the form P →M ← F , where P indicates
the location the prize, F indicates your first choice, and M indicates which door Monty opens. Clearly P and F cause
(determine) M . When we observe M , our belief about P changes because we have observed evidence about its child M .
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2.1.7 Conditional independence
1. Bayes’ rule gives

P (H|E1, E2) =
P (E1, E2|H)P (H)

P (E1, E2)
(2.31)

Thus the information in (ii) is sufficient. In fact, we don’t need P (E1, E2) because it is equal to the normalization
constant (to enforce the sum to one constraint). (i) and (iii) are insufficient.

2. Now the equation simplifies to

P (H|E1, E2) =
P (E1|H)P (E2|H)P (H)

P (E1, E2)
(2.32)

so (i) and (ii) are obviously sufficient. (iii) is also sufficient, because we can compute P (E1, E2) using normalization.

M1 (Program)

Volume of D-dimensional unit sphere (D=1-20 in x-axis) estimated by Monte Carlo 
Simulation (N=100,1000,10000). The red points are the theoretical values and the 
crosses are estimated values.
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